Grade 11/12 Math Circles

 October 18, 2023
Digital Signal Processing - Solutions

Exercise 1

Consider an input signal $x[n]$ and the corresponding time delayed signal $x\left[n-n_{0}\right]$.

Use these two signals to show that the digital filter defined by

$$
y[n]=\frac{1}{2}(x[n]+x[n-1])
$$

is time-invariant.

Exercise 1 Solution

Since $y[n]=\frac{1}{2}(x[n]+x[n-1])$, then $y\left[n-n_{0}\right]=\frac{1}{2}\left(x\left[n-n_{0}\right]+x\left[n-n_{0}-1\right]\right)$.

Now we want to determine the output when the input is $x\left[n-n_{0}\right]$. This is given by

$$
\begin{aligned}
\frac{1}{2}\left(x\left[n-n_{0}\right]+x\left[n-1-n_{0}\right]\right) & =\frac{1}{2}\left(x\left[n-n_{0}\right]+x\left[n-n_{0}-1\right]\right) \\
& =y\left[n-n_{0}\right] .
\end{aligned}
$$

Therefore the filter is time-invariant.

Exercise 2

Consider the input signal $\delta[n]$ and the shifted signal $\delta[n+1]$.

Use these two signals as a counterexample to show that the digital filter defined by

$$
y[n]=x\left[n^{2}\right]
$$

is not time-invariant.

Exercise 2 Solution

First, consider the input signal $x_{1}[n]=\delta[n]$, which is equal to 1 when $n=0$ and equal to 0 everywhere else. The output of the filter will be $y[n]=\delta\left[n^{2}\right]=\delta[n]$.

Now, consider the input signal $x_{2}[n]=\delta[n+1]$, which is equal to 1 when $n=-1$ and equal to 0 everywhere else. We see that $z[n]=\delta\left[n^{2}+1\right]$. Computing some values we find

$$
\begin{aligned}
& z[-2]=\delta[4+1] \\
& z[-1]=\delta[5]=0 \\
& z[0]=\delta[0+1]=\delta[2]=0 \\
& z[1]=\delta[1+1]=0 \\
&=\delta[2]=0
\end{aligned}
$$

and in general $z[n]=0$ for all n.

This is clearly not equal to $y[n+1]$ (which is equal to $\delta[n+1]$ from above), therefore this filter is not time-invariant.

Exercise 3

Consider the LTI filter defined by

$$
y[n]=2 x[n]+x[n-1]
$$

and the signals $z[n]=\left[\begin{array}{cccc}1 & 1 & 1 & 0\end{array}\right]$ and $z[n-1]=\left[\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right]$. Compute $y[n]$ for the input signal $x[n]=z[n]+z[n-1]$ by
a) evaluating the filter response to $x[n]$ directly, and
b) using the superposition property.

Exercise 3 Solution

a) Letting $x[n]=z[n]+z[n-1]$ we find that

$$
x[n]=\left[\begin{array}{llll}
1 & 2 & 2 & 1
\end{array}\right] .
$$

Therefore $y[n]=2 x[n]+x[n-1]$ can be evaluated by adding together the signals $2 x[n]$ and $x[n-1]$, to find

$$
y[n]=\left[\begin{array}{lllll}
2 & 5 & 6 & 4 & 1
\end{array}\right]
$$

b) We find that

$$
w[n]=2 z[n]+z[n-1]=\left[\begin{array}{llll}
2 & 3 & 3 & 1
\end{array}\right]
$$

By the superposition property, when $x[n]=z[n]+z[n-1]$ the output is $y[n]=w[n]+w[n-1]$.

Therefore

$$
y[n]=\left[\begin{array}{lllll}
2 & 5 & 6 & 4 & 1
\end{array}\right] .
$$

which agrees with what we found in a).

Exercise 4

Determine $h[n]$, i.e. determine the impulse response of the filter defined by

$$
y[n]=x[n]-2 x[n-1]+3 x[n-2] .
$$

CHALLENGE: Without doing any calculations, could you write down the impulse response of the filter $y[n]=a x[n]+b x[n-1]+c x[n-2]$, where a, b and c are constants?

Exercise 4 Solution

The impulse response of this filter is

$$
\begin{aligned}
h[n] & =\delta[n]-2 \delta[n-1]+3 \delta[n-2] \\
& =\left[\begin{array}{lll}
1 & -2 & 3
\end{array}\right] .
\end{aligned}
$$

In general, the impulse response of the filter defined by $y[n]=a x[n]+b x[n-1]+c x[n-2]$ is given by

$$
\begin{aligned}
h[n] & =a \delta[n]+b \delta[n-1]+c \delta[n-2] \\
& =\left[\begin{array}{lll}
a & b & c
\end{array}\right] .
\end{aligned}
$$

Exercise 5

Evaluate the convolution of

$$
a[n]=\left[\begin{array}{lll}
2 & -1 & 1
\end{array}\right]
$$

with

$$
b[n]=\left[\begin{array}{lll}
3 & 4 & 1
\end{array}\right]
$$

i.e. evaluate

$$
a[n] * b[n] .
$$

a) graphically using the flip and slide method,
b) and using the convolution array method.

Which method do you prefer?

Exercise 5 Solution

a) Graphically, we see that computing $y[0]$ looks like:

and we find that $y[0]=2 \cdot 3=6$.
Similarly, we see that computing $y[1]$ looks like:

and we find that $y[1]=2 \cdot 4+(-1 \cdot 3)=5$.
Continuing this process we find that

$$
y[n]=\left[\begin{array}{lllll}
6 & 5 & 1 & 3 & 1
\end{array}\right] .
$$

b) Setting up the convolution array we have:

	2	-1	1
3	6	-3	3
4	8	-4	4
1	2	-1	1

and we find that

$$
\begin{aligned}
y[n] & =\left[\begin{array}{lllll}
6 & (8-3) & (2-4+3) & (-1+4) & 1
\end{array}\right] \\
& =\left[\begin{array}{lllll}
6 & 5 & 1 & 3 & 1
\end{array}\right] .
\end{aligned}
$$

